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Definition (Reed-Frost (RF) Process )

Given a population V , the RF process is a Markov chain with
states (It , St):

I Start with an initial infected set I0 and the corresponding
susceptible set S0 = V − I0;

I Given (It , St) is given, for each v ∈ St

P[v ∈ It+1] = 1− (1− p)|It |, and St+1 = St − It .

I the set It of infected individuals are assumed to be
removed by time step t + 1;

I The process stops at the first time It = ∅.
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RF-Diagram
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a few remarks

The formula P[v ∈ It+1] = 1− (1− p)|It | gives the following
properties.

1. Each infected individual infects each susceptible individual
independently with probability p at each time step.

2. Every individuals knows all other individuals, that is, the
ground graph is a complete graph Kn.
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Definition (r -bootstrap percolation )

Given a graph G = (V ,E ), consider a deterministic process
(It , St):

I Starts with the initial set I0 6= ∅, and set S0 = V − I0;

I Given (It , St) is given, for each v ∈ St

It+1 = {v ∈ St : dIt (v) ≥ r} and St+1 = St − It+1.

I The process stops at the first time It = ∅.
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Diagram of Bootstrap Percolation
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Theorem (Barbour and Mollison)

The RF-process with probability p on Kn can be divided into
two subprocesses:

I BM-1: Associate each vertex x with a random set L(x)
such that P[ y ∈ L(x) ] = p for each y ∈ NG (x);

I BM-2: Starting with the initial infected set I0, we
construct a sequence I0, I1, . . . such that

It+1 =
⋃
x∈It

L(x)−
t⋃

i=0

Ii , and stop when Ii = ∅.
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BM-labeling
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Random Graphs and Bootstrap Percolation

I In BM-1, we may identify two events x ∈ L(y) and
y ∈ L(x) by setting P[ x ∈ L(y) and y ∈ L(x) ] = p for
any edge xy ∈ E (G ), as long as it is independent of all
other assignments for edges. The reason is that for any
RF process, at most one of the two events x ∈ L(y) and
y ∈ L(x) holds.

I Identifying x ∈ L(y) and y ∈ L(x) for all edges xy with
probability p is equivalent to keeping each edge xy in G
with probability p, which is exactly the definition of
G (n, p).
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Theorem (Barbour and Mollison)

The RF-process with probability p on Kn can be divided into
two subprocesses:

I BM-1: Generalize a G (n, p).

I BM-2: Process 1-bootstrap percolation on the
generalized (G , n, p) with the initial infected set I0.
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Definition (Generalized Reed-Frost (GRF) Process
)

Given a graph G = (V ,E ), consider a Markov Chain process
(It , St):

I Starts with the initial set I0 6= ∅, and set S0 = V − I0;

I Given (It , St) is given, for each v ∈ St

P[v ∈ It+1] = 1− (1− p)dIt (v) , and St+1 = St − It ;

I The process stops at the first time It = ∅.
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GRF
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percolation on graphs

Definition ( Bollobás ...)

Given a graph G and a probability p, a random subgraph H of
G is constructed as follows: each edge of G is kept with
probability p, or equivalently, each edge of G is deleted with
probability 1− p, independent from every other edge.

Clearly, a G (n, p) is a Kn(p)
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Theorem (Barbour and Mollison)

The RF-process with probability p on Kn can be divided into
two subprocesses:

I Generalize a G (n, p).

I Process 1-bootstrap percolation on the generalized
(G , n, p) with the initial infected set I0.
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Theorem ( Bollobás, Borgs, Chayes, Riordan)

Let (Gn) be a sequence of dense graphs with |Gn| = n, let λn
be the largest eigenvalue of the adjacency matrix of Gn, and
let pn = min{c/λn, 1}.

I If c ≤ 1, then all components of Gn(pn) are of size op(n).

I If c > 1, then the largest component of Gn(pn) has size
Θ(n) w.h.p..
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Given a GRF process I0, I2, . . . ,. Let At = ∪ti=0It .

Then, as time t progresses, we obtain an increasing sequence
of removed vertex sets A0 ⊆ A1 ⊆ A2 ⊆ · · · ⊆ At ⊆ · · · .

The percolation time t(G , p, I0) is the least T with
AT = V (G ) if such a T exists or ∞ otherwise.

The process time T (G , p, I0) is the least T with IT+1 = ∅.

Note that percolation time 6= process time.
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percolation time t(G , p, I0)

I structure of G ;

I transition probability p;

I initial infected set I0, in particular, |I0| = 1;

I t(G , p, I0) is closely related to the diameter of Gp.
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We call (G, p, 1) percolation finite if there exists a constant T
such that

lim
n→∞

P[t(G , pn, I0) ≤ T | G ∈ G|G | = n and |I0| = 1] = 1,

that is, w.h.p., all graph G ∈ G can be percolated within at
most T steps.
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Theorem (Bollobás, Klee and Lamar)

w.h.p. diam(G (n, p)) = d if as n→∞,

2d−2(pn)d−1/n − log n→ −∞

and
2d−1(pn)d/n − log n→∞.
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Three classes of dense graphs.

Gδ,α = {G | δ(G ) ≥ α|G |},
Gκ′,α = {G | κ′(G ) ≥ α|G |}, and

Gκ,α = {G | κ(G ) ≥ α|G |}.

Clearly, Gδ,α ⊃ Gκ′,α ⊃ Gκ,α.
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Difference among connectivities
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Let G be a graph of order n. If δ(G ) ≥ (n − 1)/2, then
κ′(G ) = δ(G ). So Gδ,α = Gκ′,α for α ≥ 1/2.
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Observation: If α ≤ 1/2 and lim
n→∞

pn 6= 1, then (Gδ,α, p, 1) is

not percolation finite.

If G has a bridge uv and u gets infected at a specific time t0,
then at any time t the probability for v being uninfected is
(1− pn)t−t0 , which does not converge to 0 unless lim

n→∞
pn = 1.

Therefore, if lim
n→∞

pn 6= 1 and G is a class of graphs such that

for any n ∈ N there exists a G ∈ G of order |G | ≥ n with
κ′(G ) = 1, then (G, p, 1) is not percolation finite.
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Theorem

Let α ∈ (0, 1) and γ ∈ (0, 1) be two real numbers. Then,
(Gκ′,α, 1

nγ
, 1) is percolation finite.
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Parameters

f (x) =
1

2
(x − 1

b1/xc+ 1
) and g(x) =

x + 1
b1/xc+1

2− (x + 1
b1/xc+1

)
.

It is not difficult to see that, for any x ∈ (0, 1/2], we have
f (x), g(x) ∈ (0, 1), and the following inequality.

b1/g(x)c < b1/xc for all x ∈ (0, 1
2
]. (1)
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for each α ∈ (0, 1
2
] we define an increasing sequence Θ(α):

α0 := α, α1 = g(α0) . . . αi+1 = g(αi) . . . . Let `(α) be the
least index such that α`(α) > 1/2. By (1), we have
`(x) ≤ b1/αc − 1. Let βi = f (αi) for each i = 0, 1, . . . , `(α)
and β = min{β0, β1, . . . , β`(α)}. For any α ∈ (0, 1/2],
ε ∈ (0, 1], a positive number c and a positive integer n, let

N(α, ε) =
( 1

β

) 6
ε ((2k)!)

6
ε

(25

α6

(2

ε
+ 3
)) 10

ε2

,

τ(α, ε) = 5(2k)!(2/ε + 3),

η(α, ε, c , n) = 6n2(2/α)k−1e−
cnε/2

k! , and

ξ(α, ε, c , n) = e−
cnε/2

k! ,

where k = b 1
α
c+ 1, i.e. α ∈ ( 1

k
, 1
k−1 ].
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reformulation

Theorem

Let α, ε ∈ (0, 1) and n ≥ N(α, ε) be an integer, and let c > 0
be a constant satisfying p = c/n1−ε < 1. Then for any graph
G of order n with δ(G ) ≥ αn and κ′(G ) ≥ n1−ε/2,

P[ t(G , p, 1) > τ(α, ε) ] < η(α, ε, c , n).
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induction

Our proof involves induction on b1/αc:

I We first show that it is true for b1αc = 2.

I Assume that the result is true for bαc = k . We show that
it is true for b1/αc = k + 1.

i.e.. we divide (0, 1] = (1/2, 1] ∪ (1/3, 1/2] ∪ (1/4, 1/3] · · · .
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I The result holds for graphs G with δ(G ) ≥ n/2, i.e.
α ≥ 1/2.

I w.h.p. It+1 6= if St 6= ∅.
I There is a constant τ := τ(α, ε) and ξ := ξ(α, ε) such

that w.h.p. either St+τ = ∅ or |At+τ − At | ≥ ξn.
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Suppose δ(G ) ≥ αn and α < 1/2.

If the statement 3 in the previous slide is not true, than G can
decomposed into vertex disjoint subgraphs G1, G2, . . . , Gm,
and H such that

I δ(Gi) ≥ β|Gi | with b1/βc < b1/αc, so we can use
induction on b1/αc.

I |H | is small.
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Thank you
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